Automatic Spike Sorting Using Tuning Information

نویسنده

  • Valérie Ventura
چکیده

Current spike sorting methods focus on clustering neurons' characteristic spike waveforms. The resulting spike-sorted data are typically used to estimate how covariates of interest modulate the firing rates of neurons. However, when these covariates do modulate the firing rates, they provide information about spikes' identities, which thus far have been ignored for the purpose of spike sorting. This letter describes a novel approach to spike sorting, which incorporates both waveform information and tuning information obtained from the modulation of firing rates. Because it efficiently uses all the available information, this spike sorter yields lower spike misclassification rates than traditional automatic spike sorters. This theoretical result is verified empirically on several examples. The proposed method does not require additional assumptions; only its implementation is different. It essentially consists of performing spike sorting and tuning estimation simultaneously rather than sequentially, as is currently done. We used an expectation-maximization maximum likelihood algorithm to implement the new spike sorter. We present the general form of this algorithm and provide a detailed implementable version under the assumptions that neurons are independent and spike according to Poisson processes. Finally, we uncover a systematic flaw of spike sorting based on waveform information only.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

To sort or not to sort: the impact of spike-sorting on neural decoding performance.

OBJECTIVE Brain-computer interfaces (BCIs) are a promising technology for restoring motor ability to paralyzed patients. Spiking-based BCIs have successfully been used in clinical trials to control multi-degree-of-freedom robotic devices. Current implementations of these devices require a lengthy spike-sorting step, which is an obstacle to moving this technology from the lab to the clinic. A vi...

متن کامل

Traditional waveform based spike sorting yields biased rate code estimates.

Much of neuroscience has to do with relating neural activity and behavior or environment. One common measure of this relationship is the firing rates of neurons as functions of behavioral or environmental parameters, often called tuning functions and receptive fields. Firing rates are estimated from the spike trains of neurons recorded by electrodes implanted in the brain. Individual neurons' s...

متن کامل

طبقه‌بندی پتانسیل‌های عمل نرونی با استفاده از شبکه‌های عصبی شعاعی

Background: Studying the behavior of a society of neurons, extracting the communication mechanisms of brain with other tissues, finding treatment for some nervous system diseases and designing neuroprosthetic devices, require an algorithm to sort neuralspikes automatically. However, sorting neural spikes is a challenging task because of the low signal to noise ratio (SNR) of the spikes. The mai...

متن کامل

Validation of neural spike sorting algorithms without ground-truth information

BACKGROUND The throughput of electrophysiological recording is growing rapidly, allowing thousands of simultaneous channels, and there is a growing variety of spike sorting algorithms designed to extract neural firing events from such data. This creates an urgent need for standardized, automatic evaluation of the quality of neural units output by such algorithms. NEW METHOD We introduce a sui...

متن کامل

Multichannel Electrophysiological Spike Sorting via Joint Dictionary Learning&Mixture Modeling

We propose a methodology for joint feature learning and clustering of multichannel extracellular electrophysiological data, across multiple recording periods for action potential detection and classification (“spike sorting”). Our methodology improves over the previous state of the art principally in four ways. First, via sharing information across channels, we can better distinguish between si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 21 9  شماره 

صفحات  -

تاریخ انتشار 2009